Wintersemester 2025/26 Prof. Dr. S. Held Dr. U. Brenner

Einführung in die Diskrete Mathematik 6. Übung

- 1. Sei (G, u, s, t) ein Flussnetzwerk, und seien $\delta^+(X)$ und $\delta^+(Y)$ minimale s-t-Schnitte in (G, u). Zeigen Sie, dass dann auch $\delta^+(X \cap Y)$ und $\delta^+(X \cup Y)$ minimale s-t-Schnitte in (G, u) sind. (5 Punkte)
- 2. Betrachten Sie folgendes Problem: Zu einem gegebenen einfachen zusammenhängenden ungerichteten Graphen G soll eine nicht-leere Knotenmenge $S \subseteq V(G)$ gefunden werden, sodass $\frac{|E(G[S])|}{|S|}$ maximal ist. Zeigen Sie, dass dieses Problem durch $O(\log(n))$ Aufrufe eines Max-Flow-Algorithmus auf einem Graph mit O(n) Knoten und O(m) Kanten gelöst werden kann, wobei wie immer n = |V(G)| und m = |E(G)| sei. (6 Punkte) Hinweis: Führen Sie binäre Suche durch, um den Wert $D_G := \max\left\{\frac{|E(G[S])|}{|S|} \mid S \subseteq V(G), S \neq \emptyset\right\}$ zu berechnen. Um für einen Wert γ zu testen, ob $\gamma < D_G$ gilt, konstruieren Sie einen gerichteten Graphen H mit $V(H) = V(G) \cup \{s,t\}$, sodass H für jeden Knoten $v \in V(G)$ eine Kante (s,v) mit Kapazität m und eine Kante (v,t) mit Kapazität $m + 2\gamma |\delta_G(v)|$ enthält.
- 3. Sei G ein gerichteter oder ungerichteter Graph. Wir bezeichnen für zwei Knoten $s, t \in V(G)$ mit λ_{st} die maximale Anzahl paarweise kantendisjunkter s-t-Wege in G. Seien nun $x, y, z \in V(G)$ drei verschiedene Knoten und $\alpha, \beta \in \mathbb{N}$ mit $\alpha \leq \lambda_{xy}, \beta \leq \lambda_{xz}$ und $\alpha + \beta \leq \max\{\lambda_{xy}, \lambda_{xz}\}$. Zeigen Sie, dass es dann α x-y-Wege und β x-z-Wege gibt, so dass diese $\alpha + \beta$ Wege paarweise kantendisjunkt sind. (5 Punkte)
- 4. Sei (G, u, s, t) ein Netzwerk. Man nenne einen s-t-Präfluss f in (G, u) maximal, wenn $\exp_f(t)$ maximal ist.
 - (a) Man zeige, dass es für jeden maximalen s-t-Präfluss f einen maximalen s-t-Fluss f' mit $f'(e) \leq f(e)$ für alle $e \in E(G)$ gibt.
 - (b) Man zeige, wie man in O(nm) Zeit einen maximalen s-t-Präfluss in einen maximalen s-t-Fluss umwandeln kann. (2+2 Punkte)

Sie finden den aktuellen Übungszettel stets auf der Übungs-Seite der Vorlesung: http://www.or.uni-bonn.de/lectures/ws25/edm_uebung_ws25.html

Abgabe: Donnerstag, den 4.12.2025, 16:00 Uhr über die eCampus-Seite der eigenen Übungsgruppe.

https://ecampus.uni-bonn.de/goto_ecampus_crs_3864991.html