Linear and Integer Optimization Assignment Sheet 9

1. Let
$$A := \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ s & -1 \end{pmatrix}$$
 and $b := \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$.

Use the IDEALIZED ELLIPSOID ALGORITHM with R=2 to compute a feasible solution in $P = \{x \in \mathbb{R}^2 \mid Ax \leq b\}$ for s=-1 and for s=-2. (4 points)

2. A semidefinite program is an optimization problem

$$\min C \star X$$

$$A_i \star X \le b_i \qquad \forall i = 1, \dots, m$$

$$X \succeq 0$$

$$X \in \mathbb{R}^{n \times n}$$

where C, A_1, \ldots, A_n are matrices, $A \star X := \sum_{1 \leq i,j \leq n} a_{ij} x_{ij}$ and $X \succeq 0$ means that X is symmetric and positiv semidefinite.

- (a) Show that the set $\{X \in \mathbb{R}^{n \times n} \mid X \succeq 0\}$ is a closed cone.
- (b) Construct a polynomial-time separation oracle for this set. (You may assume that you can compute basic arithmetic operations on real numbers, including square roots, exactly and in constant time.) (3+4 points)
- 3. Consider the following optimization problem:

$$\min \frac{(c^t x)^2}{d^t x}$$
s.t. $Ax \ge b$

$$x \ge 0$$

where $c, d \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ are given such that $d^t x > 0$ for any $x \in \mathbb{R}^n$ with $Ax \ge b$ and $x \ge 0$. Show that this problem can be written as a semidefinite program (see the previous exercise).

Hint: Replace the objective function by "k" (where k is a new variable) and add the constraint $k \ge \frac{(c^t x)^2}{d^t x}$.

4. Let G be simple undirected graph. Consider the following linear program:

- (a) Show that this is a relaxation of the following problem: Find distances x_{vw} for the nodes of G such that $\sum_{e=\{v,w\}\in E(G)} x_{vw}$ is minimized under the condition that there is an ordering $\{v_1,\ldots,v_{|V(G)|}\}=V(G)$ with $x_{v_iv_j}=|i-j|$ for $i,j\in\{1,\ldots,|V(G)|\}$.
- (b) Prove that there is a separation oracle for the polyhedron of the feasible solutions of the LP with running polynomial in the number of nodes and edges of G. (2+2 points)

Due date: Thursday, June 6, 2019, before the lecture.