Linear and Integer Optimization Assignment Sheet 8

- 1. Let $A \in \mathbb{Q}^{n \times n}$ be a regular matrix. Show that $\operatorname{size}(A^{-1}) \leq 4n^2 \operatorname{size}(A)$. (2 points)
- 2. Define $||A|| := \max_{||x||=1} ||Ax||$ for $A \in \mathbb{R}^{n \times n}$, where $||\cdot|| : \mathbb{R}^n \to \mathbb{R}$ is the standard Euclidean norm. Prove:
 - (a) ||A|| is a norm
 - (b) $||aa^T|| = a^T a$
 - (c) $||A|| = \max\{x^T A x \mid ||x|| = 1\}$ if A is positive semidefinite
 - (d) $||A|| \le ||A + B||$ if A and B are positiv semidefinite.

(2+2+2+2 points)

3. Let $P \subset \mathbb{R}^d$ be a finite set of points and let B be a ball containing P. Show: B is a minimum radius ball containing P if and only if the center of B lies in $conv(P \cap \partial B)$, where ∂B is the border of the ball. (5 points)

Due date: **Tuesday**, May 28, 2019, before the lecture.