Linear and Integer Optimization Assignment Sheet 3

- 1. Let P be a polyhedron. Show that the problem of finding the largest ball that can be contained in P can be written as a linear program. (5 points)
- 2. Let $A \in \mathbb{R}^{m \times n}$. Show that exactly one of the systems

$$Ax = 0, \quad x > 0$$

and

$$A^t y \ge 0, \quad A^t y \ne 0$$

has a feasible solution. The condition "x > 0" means that each entry of the vector x must be positive. (5 points)

3. For an undirected graph G with vertex weights $c:V(G)\to\mathbb{R}$ consider the following LP relaxation of the VERTEX COVER PROBLEM:

$$s.t. \quad \begin{aligned} & \min \sum_{v \in V(G)} x_v c(v) \\ s.t. \quad & x_v + x_w \ge 1 \\ & x_v \ge 0 \end{aligned} \quad \text{for } \{v, w\} \in E(G)$$

Dualize this LP. In the unweighted case (i.e. c(v) = 1 for all $v \in V(G)$), the dual LP can be seen as the LP relaxation of a well-known combinatorial optimization problem. Which one?

(4 points)

- 4. For $A \in \mathbb{R}^{m \times n}$, $c \in \mathbb{R}^n$ and $b = (b_1, \dots, b_m) \in \mathbb{R}^m$ let $x^* \in \mathbb{R}^n$ be an optimum solution of the LP $\max\{c^t x \mid Ax \leq b\}$. Moreover, let $\tilde{b} = (\tilde{b}_1, \dots, \tilde{b}_m) \in \mathbb{R}^m$, and let $\tilde{x} \in \mathbb{R}^n$ be a vector with $A\tilde{x} \leq \tilde{b}$. Prove that \tilde{x} is an optimum solution of the LP $\max\{c^t x \mid Ax \leq \tilde{b}\}$ if $a_i^t \tilde{x} < \tilde{b}_i$ implies $a_i^t x^* < b_i$ for any $i \in \{1, \dots, m\}$ (where a_i^t is the *i*-th row of A). (4 points)
- 5. Let $P, Q \subseteq \mathbb{R}^n$ be two polyhedra. Is it true that $conv(P \cup Q)$ is necessarily a polyhedron? Prove the correctness of your answer. (2 points)

Due date: Thursday, April 25, 2019, before the lecture.